Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Meat Sci ; 213: 109519, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38663116

RESUMO

Lipid oxidation is the principal driver of meat and meat product deterioration during shelf life, causing the loss of fresh meat color, flavor, and aroma. Currently, synthetic antioxidants are used to prevent oxidation, but increasing consumer demand for natural ones leaves the industry with few alternatives. In this study, protocatechuic acid (PCA), known to have high antioxidant activity, was evaluated as a potential inhibitor of meat lipid oxidation. For this purpose, the antioxidant capacity and lipoxygenase (LOX) inhibitory activity of PCA were evaluated in vitro, and a set of four experiments was conducted, treating minced meat with water (control), lactic acid (LA), rosmarinic acid (RA) and PCA, at different concentrations (1-12 mg mL-1), depending on the experiment. The potential antioxidant effect of PCA when applied to meat cubes was also evaluated, as well as the potential of carboxymethyl cellulose (CMC) as a delivery system for PCA. The in vitro results showed that PCA is a potent antioxidant and an effective LOX inhibitor at 1 mg mL-1. PCA effect on meat lipid oxidation prevention was dose-dependent, and at 2 mg mL-1, it inhibited color change by 50% and lipid peroxidation by up to 70% when compared to water-treated samples, performing better than RA at 0.25 mg mL-1. These results suggest that PCA is a promising molecule to the meat industry as a natural preservative for meat and meat products directly or in a formulation.

2.
Methods Mol Biol ; 2798: 153-159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38587741

RESUMO

Mass spectrometry is a high throughput technique widely used for metabolic fingerprinting of plant material. Among the diverse plant metabolites, pigments such as anthocyanins play a determinant role in plant defence mechanisms, protecting them from biotic and abiotic stresses. Anthocyanins are phenolic water-soluble glycosides or acyl-glycosides of anthocyanidins which could be accurately detected and quantified through mass spectrometry. This chapter describes how to extract anthocyanins from higher plant materials and quantify them through a liquid chromatography-mass spectrometry (LC-MS) based method.


Assuntos
Antocianinas , Espectrometria de Massas em Tandem , Glicosídeos , 60705 , Fenóis
3.
Int J Biol Macromol ; 265(Pt 2): 130933, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508554

RESUMO

Glucans, a polysaccharide naturally present in the yeast cell wall that can be obtained from side streams generated during the fermentation process, have gained increasing attention for their potential as a skin ingredient. Therefore, this study focused on the extraction method to isolate and purify water-insoluble glucans from two different Saccharomyces cerevisiae strains: an engineered strain obtained from spent yeast in an industrial fermentation process and a wild strain produced through lab-scale fermentation. Two water-insoluble extracts with a high glucose content (> 90 %) were achieved and further subjected to a chemical modification using carboxymethylation to improve their water solubility. All the glucans' extracts, water-insoluble and carboxymethylated, were structurally and chemically characterized, showing almost no differences between both yeast-type strains. To ensure their safety for skin application, a broad safety assessment was undertaken, and no cytotoxic effect, immunomodulatory capacity (IL-6 and IL-8 regulation), genotoxicity, skin sensitization, and impact on the skin microbiota were observed. These findings highlight the potential of glucans derived from spent yeast as a sustainable and safe ingredient for cosmetic and skincare formulations, contributing to the sustainability and circular economy.


Assuntos
Glucanos , Saccharomyces cerevisiae , Glucanos/química , Saccharomyces cerevisiae/química , Polissacarídeos/química , Água
4.
Foods ; 13(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540925

RESUMO

Fish byproducts are valuable sources of Ω-3 polyunsaturated fatty acids (PUFAs). Their valorization potentially alleviates pressure on this sector. This study uses a circular economy approach to investigate the oil fraction from sardine cooking wastewater (SCW). Analysis of its fatty acid (FA) profile revealed promising PUFA levels. However, PUFAs are highly susceptible to oxidation, prompting the exploration of effective and natural strategies to replace synthetic antioxidants and mitigate their associated risks and concerns. An antioxidant extract from acorn shells was developed and evaluated for its efficacy in preventing oxidative degradation. The extract exhibited significant levels of total phenolic compounds (TPC: 49.94 and 22.99 mg TAE or GAE/g DW) and antioxidant activities (ABTS: 72.46; ORAC: 59.60; DPPH: 248.24 mg TE/g DW), with tannins comprising a significant portion of phenolics (20.61 mg TAE/g DW). LC-ESI-UHR-QqTOF-MS identified ellagic acid, epicatechin, procyanidin B2 and azelaic acid as the predominant phenolic compounds. The extract demonstrated the ability to significantly reduce the peroxide index and inhibit PUFA oxidation, including linoleic acid (LA), eicosapentaenoic (EPA), and docosahexaenoic acid (DHA). This approach holds promise for developing stable, functional ingredients rich in PUFAs. Future research will focus on refining oil extraction procedures and conducting stability tests towards the development of specific applications.

5.
Carbohydr Polym ; 333: 121978, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494231

RESUMO

Mushroom polysaccharides are recognized as "biological response modifiers". Besides several bioactivities, a growing interest in their prebiotic potential has been raised due to the gut microbiota modulation potential. This review comprehensively summarizes mushroom polysaccharides' biological properties, structure-function relationship, and underlying mechanisms. It provides a recent overview of the key findings in the field (2018-2024). Key findings and limitations on structure-function correlation are discussed. Although most studies focus on ß-glucans or extracts, α-glucans and chitin have gained interest. Prebiotic capacity has been associated with α-glucans and chitin, while antimicrobial and wound healing potential is attributed to chitin. However, further research is of utmost importance. Human fecal fermentation is the most reported approach to assess prebiotic potential, indicating impacts on intestinal biological, mechanical, chemical and immunological barriers. Gut microbiota dysbiosis has been directly connected with intestinal, cardiovascular, metabolic, and neurological diseases. Concerning gut microbiota modulation, animal experiments have suggested proinflammatory cytokines reduction and redox balance re-establishment. Most literature focused on the anticancer and immunomodulatory potential. However, anti-inflammatory, antimicrobial, antiviral, antidiabetic, hypocholesterolemic, antilipidemic, antioxidant, and neuroprotective properties are discussed. A significant overview of the gaps and research directions in synergistic effects, underlying mechanisms, structure-function correlation, clinical trials and scientific data is also given.


Assuntos
Agaricales , Anti-Infecciosos , Microbioma Gastrointestinal , Animais , Humanos , Prebióticos , Polissacarídeos/farmacologia , Polissacarídeos/química , Quitina/farmacologia , Glucanos/farmacologia , Anti-Infecciosos/farmacologia
6.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542189

RESUMO

The encapsulation of retinol within silica microparticles has emerged as a promising opportunity in the realm of cosmetic and pharmaceutical formulations, driven by the need to reinforce the photoprotection and oxidation stability of retinol. This work examines the process of encapsulating retinol into silica microparticles. The association efficiency, microparticle size, molecular structure, morphology, oxidation, and release profile, as well as biocompatibility and skin sensitization, were evaluated. Results showed that 0.03% of retinol and 9% of emulsifier leads to an association efficiency higher than 99% and a particle size with an average of 5.2 µm. FTIR results indicate that there is an association of retinol with the silica microparticles, and some may be on the surface. Microscopy indicates that when association happens, there is less aggregation of the particles. Oxidation occurs in two different phases, the first related to the retinol on the surface and the second to the associated retinol. In addition, a burst release of up to 3 h (30% free retinol, 17% associated retinol) was observed, as well as a sustained release of 44% of retinol up to 24 h. Encapsulation allowed an increase in the minimal skin cytotoxic concentrations of retinol from 0.04 µg/mL to 1.25 mg/mL without skin sensitization. Overall, retinol is protected when associated with silica microparticles, being safe to use in cosmetics and dermatology.


Assuntos
Retinoides , Saccharum , Preparações de Ação Retardada , Vitamina A , Dióxido de Silício/química , Tamanho da Partícula
7.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339165

RESUMO

The pursuit for better skin health, driven by collective and individual perceptions, has led to the demand for sustainable skincare products. Environmental factors and lifestyle choices can accelerate skin aging, causing issues like inflammation, wrinkles, elasticity loss, hyperpigmentation, and dryness. The skincare industry is innovating to meet consumers' requests for cleaner and natural options. Simultaneously, environmental issues concerning waste generation have been leading to sustainable strategies based on the circular economy. A noteworthy solution consists of citrus by-product valorization, as such by-products can be used as a source of bioactive molecules. Citrus processing, particularly, generates substantial waste amounts (around 50% of the whole fruit), causing unprecedented environmental burdens. Hesperidin, a flavonoid abundant in orange peels, is considered to hold immense potential for clean skin health product applications due to its antioxidant, anti-inflammatory, and anticarcinogenic properties. This review explores hesperidin extraction and purification methodologies as well as key skincare application areas: (i) antiaging and skin barrier enhancement, (ii) UV radiation-induced damage, (iii) hyperpigmentation and depigmentation conditions, (iv) wound healing, and (v) skin cancer and other cutaneous diseases. This work's novelty lies in the comprehensive coverage of hesperidin's promising skincare applications while also demonstrating its potential as a sustainable ingredient from a circular economy approach.


Assuntos
Citrus sinensis , Citrus , Hesperidina , Hiperpigmentação , Humanos , Hesperidina/farmacologia , Flavonoides , Antioxidantes
8.
Biotechnol J ; 19(2): e2300465, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403437

RESUMO

This work aimed to study for the first time the effects of phenolic compounds from sugarcane syrup on Saccharomyces cerevisiae ß-farnesene fermentation by removing them from this feedstock. Syrup purification was optimized through a central composite design using five types of activated charcoal: three contact times (1-24 h) and three adsorbent concentrations (10-150 g L-1 ). The optimal purification condition-charcoal pellets at 115 g L-1 and contact time of 12.5 h-led to 96.7% of phenolic compounds removal and 43.7% of syrup recovery. The effects of reducing phenolic content from approximately 7.0-0.3 mg L-1 in sugarcane syrup on yeast fermentation varied with the scale. An increase in biomolecule productivity was only observed in shake-flasks (11%) and in biomass productivity only in the 2 L bioreactor (12%). Thus, phenolic compounds from sugarcane syrup do not influence ß-farnesene production at a large scale under the conditions tested.


Assuntos
Saccharomyces cerevisiae , Saccharum , Sesquiterpenos , Fermentação , Etanol , Fenóis
9.
Biomolecules ; 14(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397470

RESUMO

Sugarcane, a globally cultivated crop constituting nearly 80% of total sugar production, yields residues from harvesting and sugar production known for their renewable bioactive compounds with health-promoting properties. Despite previous studies, the intricate interplay of extracts from diverse sugarcane byproducts and their biological attributes remains underexplored. This study focused on extracting the lipid fraction from a blend of selected sugarcane byproducts (straw, bagasse, and filter cake) using ethanol. The resulting extract underwent comprehensive characterization, including physicochemical analysis (FT-IR, DSC, particle size distribution, and color) and chemical composition assessment (GC-MS). The biological properties were evaluated through antihypertensive (ACE), anticholesterolemic (HMG-CoA reductase), and antidiabetic (alpha-glucosidase and Dipeptidyl Peptidase-IV) assays, alongside in vitro biocompatibility assessments in Caco-2 and Hep G2 cells. The phytochemicals identified, such as ß-sitosterol and 1-octacosanol, likely contribute to the extract's antidiabetic, anticholesterolemic, and antihypertensive potential, given their association with various beneficial bioactivities. The extract exhibited substantial antidiabetic effects, inhibiting α-glucosidase (5-60%) and DPP-IV activity (25-100%), anticholesterolemic potential with HMG-CoA reductase inhibition (11.4-63.2%), and antihypertensive properties through ACE inhibition (24.0-27.3%). These findings lay the groundwork for incorporating these ingredients into the development of food supplements or nutraceuticals, offering potential for preventing and managing metabolic syndrome-associated conditions.


Assuntos
Saccharum , Humanos , Saccharum/metabolismo , Células CACO-2 , Anti-Hipertensivos/farmacologia , alfa-Glucosidases/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Açúcares , Lipídeos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
10.
Nutrients ; 16(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38398840

RESUMO

Blueberries, red fruits enriched in polyphenols and fibers, are envisaged as a promising nutraceutical intervention in a plethora of metabolic diseases. Prediabetes, an intermediate state between normal glucose tolerance and type 2 diabetes, fuels the development of complications, including hepatic steatosis. In previous work, we have demonstrated that blueberry juice (BJ) supplementation benefits glycemic control and lipid profile, which was accompanied by an amelioration of hepatic mitochondrial bioenergetics. The purpose of this study is to clarify the impact of long-term BJ nutraceutical intervention on cellular mechanisms that govern hepatic lipid homeostasis, namely autophagy and endoplasmic reticulum (ER) stress, in a rat model of prediabetes. Two groups of male Wistar rats, 8-weeks old, were fed a prediabetes-inducing high-fat diet (HFD) and one group was fed a control diet (CD). From the timepoint where the prediabetic phenotype was achieved (week 16) until the end of the study (week 24), one of the HFD-fed groups was daily orally supplemented with 25 g/kg body weight (BW) of BJ (HFD + BJ). BW, caloric intake, glucose tolerance and insulin sensitivity were monitored throughout the study. The serum and hepatic lipid contents were quantified. Liver and interscapular brown and epidydimal white adipose tissue depots (iBAT and eWAT) were collected for histological analysis and to assess thermogenesis, ER stress and autophagy markers. The gut microbiota composition and the short-chain fatty acids (SCFAs) content were determined in colon fecal samples. BJ supplementation positively impacted glycemic control but was unable to prevent obesity and adiposity. BJ-treated animals presented a reduction in fecal SCFAs, increased markers of arrested iBAT thermogenesis and energy expenditure, together with an aggravation of HFD-induced lipotoxicity and hepatic steatosis, which were accompanied by the inhibition of autophagy and ER stress responses in the liver. In conclusion, despite the improvement of glucose tolerance, BJ supplementation promoted a major impact on lipid management mechanisms at liver and AT levels in prediabetic animals, which might affect disease course.


Assuntos
Mirtilos Azuis (Planta) , Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Estado Pré-Diabético , Ratos , Masculino , Animais , Camundongos , Estado Pré-Diabético/metabolismo , Diabetes Mellitus Tipo 2/complicações , Ratos Wistar , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Obesidade/metabolismo , Suplementos Nutricionais , Glucose/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lipídeos/farmacologia , Autofagia , Camundongos Endogâmicos C57BL
11.
Food Chem ; 442: 138368, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219565

RESUMO

Mango peels are widely produced and highly perishable. Disinfectant washing and freezing are among the most used methods to preserve foods. However, their impact on products' properties is conditioned by the foods' features. This study evaluated for the first time the phytochemical composition, antioxidant activity, and microstructure of mango peels washed with peracetic acid (27 mg/mL for 19 min) and frozen at -20 °C for 30 days. Washing decreased the content of vitamin C (-7%), penta-O-galloyl-ß-d-glucose (-23 %), catechin (-30 %), and lutein (-24 %), but the antioxidant activity was preserved. Freezing changed mango peels' microstructure, increased free phenolic compounds, namely acid gallic (+36 %) and catechin (+51 %), but reduced bound phenolic compounds (-12 % to -87 %), bound phenolic compounds' antioxidant activity (-51 % to -72 %), and violaxanthin (-51 %). Both methods were considered adequate to conserve mango peels since fiber and the main bioactive compounds (free mangiferin, free gallic acid, and ß-carotene) remained unchanged or increased.


Assuntos
Catequina , Glucose , Mangifera , Antioxidantes/química , Mangifera/química , Catequina/análise , Congelamento , Frutas/química
12.
Compr Rev Food Sci Food Saf ; 23(1): e13247, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284589

RESUMO

Low consumer acceptance of edible insects and insect-based products is one of the main barriers to the successful implementation of entomophagy in Western countries. This rejection is mainly caused by consumers' negative emotional responses, psychological/personality traits, and attitudes toward food choices. However, as the role of intrinsic product characteristics on such food choices has not been adequately studied, a systematic review was conducted following the PRISMA method, to analyze studies that have assessed hedonic evaluations, sensory profiling, or emotional responses to edible insects or insect-based products. The majority of studies performed with whole insects and insect flour highlight that insect-based products are more negatively evaluated than control products. Although the sensory properties of insects are affected by species and processing conditions, they are generally negative across sensory dimensions. In particular, insects and insect-based products are generally associated with odor and flavor/taste attributes that are related to old/spoiled food. These negative attributes can be linked to the fat fraction of edible insects, with insect oils being very negatively evaluated by consumers. On the other hand, defatted fractions and deodorized oils are not associated with these negative attributes, further supporting the hypothesis that the fat fraction is responsible for the negative odor and flavor/taste attributes. However, there is still a lack of studies assessing the sensory profile of edible insects and insect-based products, as well as consumers' emotional responses to their consumption. Future studies should focus on the effects of different processing conditions, products incorporating insect fractions (namely protein concentrates/isolates and defatted fractions), and evaluation by target consumer groups.


Assuntos
Insetos Comestíveis , Animais , Emoções , Farinha , Insetos , Óleos , Humanos
13.
Int J Biol Macromol ; 260(Pt 2): 129328, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242403

RESUMO

Pulsed electric field (PEF) technology was used to extract starch from Q. robur flours using low-intensity electric fields (0 and 0.1 kV/cm) and study the impact of PEF on the structure and properties of acorn starch concerning commercial starch. PEF technology is an advantageous method for starch extraction than the aqueous steeping from an industrial perspective since reduces extraction time and allows for continuous processing of larger suspension volumes. PEF technology preserved the amylose and amylopectin contents, hydrogen bonds, and diffraction patterns, as well as the starch native properties. Hence, PEF could be used to obtain native starches, but future studies should verify its economic viability. Acorn starches have lower damaged starch content, gelatinization temperatures, enthalpies, improved pseudoplastic behavior, reduced in-vitro digestibility, and lower resistance to deformation compared to commercial corn starch. The higher solubility and swelling power of acorn starches up to 80 °C make them a suitable food additive in fermented yogurt and milk products and thus help to value acorn and acorn starches. Hence, acorns can be used to obtain native starches, a food ingredient with a wide range of food and non-food usage, using PEF.


Assuntos
Quercus , Amido , Amido/química , Quercus/química , Amilopectina/química , Amilose/química , Temperatura
14.
Appl Microbiol Biotechnol ; 108(1): 73, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38194142

RESUMO

Vulvovaginal candidiasis (VVC) affects approximately 30-50% of women at least once during their lifetime, causing uncomfortable symptoms and limitations in their daily quality of life. Antifungal therapy is not very effective, does not prevent recurrencies and usually causes side effects. Therefore, alternative therapies are urgently needed. The goal of this work was to investigate the potential benefits of using mannan oligosaccharides (MOS) extracts together with a Lactobacillus sp. pool, composed by the most significant species present in the vaginal environment, to prevent infections by Candida albicans. Microbial growth of isolated strains of the main vaginal lactobacilli and Candida strains was assessed in the presence of MOS, to screen their impact upon growth. A pool of the lactobacilli was then tested against C. albicans in competition and prophylaxis studies; bacterial and yeast cell numbers were quantified in specific time points, and the above-mentioned studies were assessed in simulated vaginal fluid (SVF). Finally, adhesion to vaginal epithelial cells (HeLa) was also evaluated, once again resorting to simultaneous exposure (competition) or prophylaxis assays, aiming to measure the effect of MOS presence in pathogen adherence. Results demonstrated that MOS extracts have potential to prevent vaginal candidiasis in synergy with vaginal lactobacilli, with improved results than those obtained when using lactobacilli alone. KEY POINTS: Potential benefits of MOS extracts with vaginal lactobacilli to prevent C. albicans infections. MOS impacts on growth of vaginal lactobacilli pool and C. albicans in SVF. MOS extracts in synergy with L. crispatus inhibit C. albicans adhesion in HeLa cells.


Assuntos
Candida albicans , Candidíase Vulvovaginal , Feminino , Humanos , Mananas , Células HeLa , Qualidade de Vida , Candidíase Vulvovaginal/prevenção & controle , Lactobacillus
15.
Foods ; 13(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275685

RESUMO

The present review paper focuses on recent developments in edible films and coatings made of base compounds from biological sources, namely plants, animals, algae, and microorganisms. These sources include by-products, residues, and wastes from agro-food industries and sea products that contribute to sustainability concerns. Chitosan, derived from animal biological sources, such as crustacean exoskeletons, has been the most studied base compound over the past three years. Polysaccharides typically constitute no more than 3-5% of the film/coating base solution, with some exceptions, like Arabic gum. Proteins and lipids may be present in higher concentrations, such as zein and beeswax. This review also discusses the enrichment of these bio-based films and coatings with various functional and/or bioactive compounds to confer or enhance their functionalities, such as antimicrobial, antioxidant, and anti-enzymatic properties, as well as physical properties. Whenever possible, a comparative analysis among different formulations was performed. The results of the applications of these edible films and coatings to fruit and vegetable products are also described, including shelf life extension, inhibition of microbial growth, and prevention of oxidation. This review also explores novel types of packaging, such as active and intelligent packaging. The potential health benefits of edible films and coatings, as well as the biodegradability of films, are also discussed. Finally, this review addresses recent innovations in the edible films and coatings industry, including the use of nanotechnologies, aerogels, and probiotics, and provides future perspectives and the challenges that the sector is facing.

16.
Biotechnol J ; 19(2): e2300291, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013664

RESUMO

Nannochloropsis oceanica is a microalga with relevant protein content, making it a potential source of bioactive peptides. Furthermore, it is also rich in fatty acids, with a special focus on eicosapentaenoic acid (EPA), an omega-3 fatty acid mainly obtained from marine animal sources, with high importance for human health. N. oceanica has a rigid cell wall constraining protein extraction, thus hydrolyzing it may help increase its components' extractability. Therefore, a Box-Behnken experimental design was carried out to optimize the hydrolysis. The hydrolysate A showed 67% ± 0.7% of protein, antioxidant activity of 1166 ± 63.7 µmol TE g-1 of protein and an ACE inhibition with an IC50 of 379 µg protein mL-1 . The hydrolysate B showed 60% ± 1.8% of protein, antioxidant activity of 775 ± 13.0 µmol TE g-1 of protein and an ACE inhibition with an IC50 of 239 µg protein mL-1 . The by-product showed higher yields of total fatty acids when compared to "raw" microalgae, being 5.22% and 1%, respectively. The sustainable developed methodology led to the production of one fraction rich in bioactive peptides and another with interesting EPA content, both with value-added properties with potential to be commercialized as ingredients for different industrial applications, such as functional food, supplements, or cosmetic formulations.


Assuntos
Ácido Eicosapentaenoico , Microalgas , Animais , Humanos , Ácido Eicosapentaenoico/metabolismo , Hidrólise , Antioxidantes/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo , Ácidos Graxos/metabolismo , Microalgas/metabolismo
17.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38139863

RESUMO

Curcumin is a natural phenolic compound with important biological functions. Despite its demonstrated efficacy in vitro, curcumin biological activities in vivo are dependent on its bioaccessibility and bioavailability, which have been highlighted as a crucial challenge. Cetyltrimethylammonium bromide-modified cellulose nanocrystals (CNC-CTAB) have been shown to be effective in curcumin encapsulation, as they have the potential to enhance biological outcomes. This study evaluated the biological effects of curcumin encapsulated within CNC-CTAB structures, namely its antioxidant, anti-inflammatory and antimicrobial properties, as well as the release profile under digestion conditions and intestinal permeability. Encapsulated curcumin demonstrated antioxidant and anti-inflammatory properties, effectively reducing reactive oxygen species and cytokine production by intestinal cells. The delivery system exhibited antimicrobial properties against Campylobacter jejuni bacteria, further suggesting its potential in mitigating intestinal inflammation. The system showed the ability to protect curcumin from degradation and facilitate its interaction with the intestinal epithelium, highlighting the potential of CNC-CTAB as carrier to enhance curcumin intestinal biological functions.

18.
Foods ; 12(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38137266

RESUMO

Nowadays, plant-based bioactive compounds (BCs) are a key focus of research, supporting sustainable food production and favored by consumers for their perceived safety and health advantages over synthetic options. Lavandula pedunculata (LP) is a Portuguese, native species relevant to the bioeconomy that can be useful as a source of natural BCs, mainly phenolic compounds. This study compared LP polyphenol-rich extracts from conventional maceration extraction (CE), microwave and ultrasound-assisted extraction (MAE and UAE). As a result, rosmarinic acid (58.68-48.27 mg/g DE) and salvianolic acid B (43.19-40.09 mg/g DE) were the most representative phenolic compounds in the LP extracts. The three methods exhibited high antioxidant activity, highlighting the ORAC (1306.0 to 1765.5 mg Trolox equivalents (TE)/g DE) results. In addition, the extracts obtained with MAE and CE showed outstanding growth inhibition for B. cereus, S. aureus, E. coli, S. enterica and P. aeruginosa (>50%, at 10 mg/mL). The MAE extract showed the lowest IC50 (0.98 mg DE/mL) for angiotensin-converting enzyme inhibition and the best results for α-glucosidase and tyrosinase inhibition (at 5 mg/mL, the inhibition was 87 and 73%, respectively). The LP polyphenol-rich extracts were also safe on caco-2 intestinal cells, and no mutagenicity was detected. The UAE had lower efficiency in obtaining LP polyphenol-rich extracts. MAE equaled CE's efficiency, saving time and energy. LP shows potential as a sustainable raw material, allowing diverse extraction methods to safely develop health-promoting food and nutraceutical ingredients.

19.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958924

RESUMO

Lignin has emerged as a promising eco-friendly multifunctional ingredient for cosmetic applications, due to its ability to protect against ultraviolet radiation and its antioxidant and antimicrobial properties. However, its typical dark color and low water solubility limit its application in cosmetics. This study presents a simple process for obtaining light-colored lignin (LCLig) from sugarcane bagasse (SCB) alkaline black liquor, involving an oxidation treatment with hydrogen peroxide, followed by precipitation with sulfuric acid. The physico-chemical characterization, antioxidant and emulsifying potential of LCLig, and determination of its safety and stability in an oil-in-water emulsion were performed. A high-purity lignin (81.6%) with improved water solubility was obtained, as a result of the balance between the total aromatic phenolic units and the carboxylic acids. In addition, the antioxidant and emulsifying capacities of the obtained LCLig were demonstrated. The color reduction treatment did not compromise the safety of lignin for topical cosmetic applications. The emulsion was stable in terms of organoleptic properties (color, pH, and viscosity) and antioxidant activity over 3 months at 4, 25, and 40 °C.


Assuntos
Cosméticos , Saccharum , Lignina/química , Celulose/química , Saccharum/química , Antioxidantes/farmacologia , Emulsões , Raios Ultravioleta , Beleza , Água
20.
Materials (Basel) ; 16(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38005176

RESUMO

Textile dyeing is known to have major environmental concerns, especially with the high use of toxic chemicals. The use of alternatives such as natural dyes rich in phenolic compounds has become extremely appealing in order to move towards a more sustainable circular economy. Phenolic dyes have the potential to functionalize textile fabrics with properties such as antimicrobial, antioxidant, and UV protection. Wastes/residues from the agri-food industries stand out as highly attractive sources of these compounds, with several by-products showing promising results in textile dyeing through the implementation of more sustainable and eco-friendly processes. This review presents an up-to-date exploration of the sources of phenolic compounds used in the textile industry over the past two decades, with a primary focus on the functional properties they provide to different fabrics. The research highlights a surge in interest in this theme since 2017, accentuating a noticeable upward trend. Throughout this review, emphasis is given to by-products from the agri-food industry as the sources of these compounds. The reviewed papers lay the foundation for future research, paving the way for exploring the potential of raw materials and by-products in the creation of functional and smart textiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...